ka | en
Company Slogan TODO

TO MODELING OF THERMODYNAMIC NONSHALLOW ELASTIC SHELLS, APPLICATION OF COMPLEX ANALYSIS AND HIGH ORDER FINITE ELEMENT METHOD

Author: Tamaz Vashakmadze
Keywords: nonshallow shells, Monge-Amper operator, high order accuracy finite element method.
Annotation:

We consider the problem of mathematical modeling of piezoelectric, electrical conductivity and viscous elastic multilayer nonshallow shells by 2-Dim von Kảrmản-Koiter-Ciarlet type refined theories. The staticall part of corresponding models represent boundary value problems for nonlinear systems of 2Dim partial integro-differential equations with Monge-Ampere operators and Poisson brackets. As a typical example we consider some details when shells presents longitude thin walled tube. The trial of applied some schemes of theory of analytical functions] and a projective method will be given. For latest case we construct high order accuracy finite element method .This one would be used new algorithms which represent efficient decision of 13-rd Hilbert problem for multivariable polynomials of Stone-Weierstrass type.


Lecture files:

TO MODELING OF THERMODYNAMIC NONSHALLOW ELASTIC SHELLS, APPLICATION OF COMPLEX ANALYSIS AND HIGH ORDER FINITE ELEMENT METHOD [en]
თერმოდინამიური არადამრეცი დრეკადი გარსის მოდელირების, კომპლექსური ანალიზისა და მაღალი სიზუსტის სასრული ელემენტის მეთოდის გამოყენების შესახებ [ka]

Web Development by WebDevelopmentQuote.com
Design downloaded from Free Templates - your source for free web templates
Supported by Hosting24.com