
For Peer Review
 O

nly
 

 

 

 

 

 

On Integral Functionals of a Density 
 

 

Journal: Communications in Statistics – Theory and Methods 

Manuscript ID: LSTA-2014-0585 

Manuscript Type: Original Paper 

Date Submitted by the Author: 14-Jul-2014 

Complete List of Authors: Sokhadze, Grigol; Applied Mathematical Institute, Theory of Probability and 
Mathematical Statistics 

Keywords: consistency, Plug-in-estimator, central limit theorem, information, entropy 

Abstract: 

Estimation of a nonlinear integral functional of probability distribution 
density and its derivatives is studied. The truncated plug-in-estimator is 
taken for the estimation. The integrand function can be unlimited, but it 
cannot exceed polynomial growth. Consistency of the estimator is proved 
and the convergence order is established.  
Aversion of the central limit theorem is proved. As an example an extended 
Fisher information integral and generalized Shannon's entropy functional 
are considered 

  

Note: The following files were submitted by the author for peer review, but cannot be converted to 
PDF.  You must view these files (e.g. movies) online. 

Nadaraya_Sokhadze_2014.tex 

 

 

URL: http://mc.manuscriptcentral.com/lsta E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics ? Theory and Methods



For Peer Review
 O

nly
On Integral Functionals of a Density

Elizbar Nadaraya∗, Grigol Sokhadze∗∗

∗Faculty of Exact and Natural Sciences, Department of Mathematics,
I. Javakhishvili Tbilisi State University, 2 University St. Tbilisi 0186, Georgia

E-mail: elizbar.nadaraya@tsu.ge
∗∗I. Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi State

University, 2 University St. Tbilisi 0186, Georgia

E-mail: grigol.sokhadze@tsu.ge

Abstract

Estimation of a nonlinear integral functional of probability dis-
tribution density and its derivatives is studied. The truncated plug-
in-estimator is taken for the estimation. The integrand function can
be unlimited, but it cannot exceed polynomial growth. Consistency
of the estimator is proved and the convergence order is established.
Aversion of the central limit theorem is proved. As an example an ex-
tended Fisher information integral and generalized Shannon’s entropy
functional are considered.

2010 Mathematics Subject Classification. Primary 62G07,
62G20; Secondary 62E20.

Key words and phrases. Plug-in-estimator, integral functional,
consistency, central limit theorem, information, entropy.

Send Correspondence to:
Grigol Sokhadze,
I. Javakhishvili Tbilisi State University,
Room 335, build 3-a,
2 University St., Tbilisi 0186
Georgia

1

Page 1 of 25

URL: http://mc.manuscriptcentral.com/lsta E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics ? Theory and Methods

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
1 Introduction

Consider the functional of following type

I(f) =

∞∫
−∞

ϕ
(
x, f(x), f ′(x), . . . , f (m)(x)

)
dx, (1)

where ϕ is a smooth function of m + 2 variables; f(x) is an unknown prob-
ability distribution density of a random variable X; f (k)(x), k = 0, 1, . . . ,m

is a derivative of the function f(x) of the order k, f (0)(x)
def
= f(x). Let

X1, X2, . . . , Xn be a sample of independent identically distributed random
variables each of which has a distribution coinciding with the distribution
of X. The problem of statistical estimation of the functional I(f) will be
studied on the basis of this sample using the truncated plug-in-estimator:

I(f̂n, sn) =

sn∫
−sn

ϕ
(
x, f̂n(x), f̂ ′n(x), . . . , f̂ (m)

n (x)
)
dx, (2)

where f̂n(x) is the estimator of the density f(x), and f̂
(k)
n (x), k = 0, 1, . . . ,m,

is the derivative of the function f̂n(x) order k, f̂
(0)
n (x)

def
= f̂n(x). As an

estimator of f(x) and its derivatives we give the kernel probability density
estimator obtained by Rosenblatt–Parzen (Rosenblatt (1956), Parzen (1962),
Bhattacharya (1967), Schuster (1969), Nadaraya (1988)). They have the
following form

f̂ (k)
n (x) =

1

nhk+1
n

n∑
i=1

K(k)
(x−Xi

hn

)
, k = 0, 1, . . .m. (3)

The problem of estimation of the integral functional of form (1) and its par-
ticular varieties has been studied by a number of authors. Results have been
obtained where consistency and other asymptotic properties are established.
These properties were used in some quite interesting studies in order to de-
fine properties of specific integral functionals of application significance (Levit
(1978), Hall and Marron (1987), Bickel and Ritov (1988), Birge and Mas-
sart (1995), Laurent (1996), Mason (2003), Gine and Mason (2008), Mason,
Nadaraya and Sokhadze (2010)).
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The results obtained in the above-mentioned works cannot, however, be

applied to some quite important cases. This mainly refers to functional in
which the function ϕ is unlimited. In, particular, it concerns the Fisher
information estimator and Shannon’s entropy

IF (f) =

∞∫
−∞

(f ′(x))2

f(x)
dx, IS(f) =

∞∫
−∞

f(x) log f(x) dx. (4)

Integral functionals of form (4) have been the subject of separate studies. We
should particularly mention Bhattacharya’s work (1967), where an efficient
approach to the estimation of these integrals is given. As an extension of
this work the paper by Dmitriev and Tarasenko (1973) can be mentioned.

The aim of the given article is to study the asymptotic properties of type
(2) functional as an estimator of functional (1) so that it would also cover
the case of integral functional of type (4).

2 Preliminaries

Introduce the notation and conditions that we will need in the forthcoming.
The following conditions are assumed to be satisfied for the function ϕ:

Assumption (ϕ1). ϕ(x, x0, . . . , xm) is a function of m + 2 variables,
which has an open definition domain Dϕ, takes real values, is continuous
with respect to the set of variables and has continuous partial derivatives up
to the second order inclusively, with respect to the variables x0, . . . , xm.

For simplicity we denote partial derivatives of the function ϕ in the fol-
lowing way:

∂ϕ(x, x0, x1, . . . , xm)

∂xi

def
= ϕ(i)(x, x0, x1, . . . , xm)

def
= ϕ(i), i = 0, 1, . . . ,m,

∂2ϕ(x, x0, . . . , xm)

∂xixj

def
= ϕ(ij)(x, x0, . . . , xm)

def
= ϕ(ij), i, j = 0, 1, . . . ,m.

Assumption (ϕ2). The derivatives of the function ϕ satisfy growth
conditions: constants α0i ∈ R, β0ij ∈ R and Cϕ > 0, αi ≥ 0, βij ≥ 0, α1i ≥
0, . . . , αmi ≥ 0, β1ij ≥ 0, . . . , βmij ≥ 0, exist, such that for any admissible
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values of the arguments and for each i, j = 0, 1, . . . ,m, we have∣∣ϕ(i)(x, x0, x1, . . . , xm)

∣∣ ≤ Cϕ|x|αi |x0|α0i |x1|α1i · · · |xm|αmi , (5)∣∣ϕ(ij)(x, x0, x1, . . . , xm)
∣∣ ≤ Cϕ|x|βij |x0|β0ij |x1|β1ij . . . |xm|βmij . (6)

Note that in inequalities (5) and (6) constants α0i and β0ij, i, j = 0, 1, . . . ,m,
can be both positive or negative (or equal to 0).

Assumption (ϕ3). Integral
∞∫
−∞

ϕ(x, f(x), f ′(x), . . . , f (m)(x)) dx exists.

Let X be a random variable with probability distribution density f(x).
Assume that the following conditions are satisfied for it:

Assumption (f1). The density function f(x) has continuous derivatives
up to the order m ≥ 0 inclusive.

Assumption (f2). For a Cf > 0, we have sup
x∈R
|f (k)(x)| ≤ Cf < ∞,

k = 0, 1, . . . ,m.

Assumption (f3). For every k = 1, . . . ,m, f (k) ∈ L1(R).

Assumption (f4). Exists strictly growing function H(x) such that

sup
|y|≤x

1

f(y)
≤ H(x). (7)

Without loss of generality, assume that H(x) ≥ x. Introduce the function

V (α;x)
def
=

{
Cα
f , if α ≥ 0,

(H(x))−α, if α < 0.

Consider a real-valued nonnegative function K(x) and assume that the fol-
lowing conditions hold:

Assumption (k1).
∞∫
−∞

K(x) dx = 1.

Assumption (k2). K(x) has continuous derivatives up to the order m
inclusive.

Assumption (k3). For a CK > 0, |K(k)(x)| ≤ CK <∞, k = 0, 1, . . . ,m.

4
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Assumption (k4). The function K(x) has a compact support which

lies within the interval [−k,k].

X1, X2, . . . , Xn is a sample of independent identically distributed random
variables each of which having a distribution coinciding with the distribution
of X. Apply kernel estimator (3) to the unknown function f (k)(x), k =
0, 1, . . . ,m. For the sequence {hn}∞n=1 the following condition is satisfied:

Assumption (h). hn, n = 1, 2, . . . , is a sequence of positive numbers
monotonically converging to 0, such that hn ≥ c logn

n
for a c > 0.

It is known (Dony, Einmahl and Mason (2006)), that under the conditions
(f1)–(f3), (k1)–(k4) and (h), for every k = 0, 1, . . . ,m, with probability
equal to 1, we have

sup
x∈R

∣∣f̂ (k)
n (x)− Ef̂ (k)

n (x)
∣∣ = O

(√
| log hn| ∨ log log n
√
nh0,5+kn

)
. (8)

Let f
(k)
n (x) = Ef̂

(k)
n (x). We have an equality

f (k)
n (x) = Ef̂ (k)

n (x) =
1

hk+1
n

∞∫
−∞

K(k)
(x− t
hn

)
f(t) du.

Applying the formula of integration by parts several times we obtain

f (k)
n (x) =

∞∫
−∞

K(u)f (k)(x− uhn) du. (9)

Which together with the continuity of the functions f (k)(x), results in a

point wise convergence f
(k)
n (x)→ f (k)(x), x ∈ R, for any k = 0, 1, . . . ,m (see

Parzen (1962), Theorem 1A). This, in its turn, implies the convergence

ϕ
(
x, fn(x), . . . , f (m)

n (x)
)
→ ϕ

(
x, f(x), . . . , f (m)(x)

)
, x ∈ R as n→∞.

As it has been already mentioned above, a truncated integral functional (2)
is taken as an estimator of functional (1).

The problem is to choose hn and sn so that sn ↑ ∞ as n → ∞ and the
convergence of I(f̂n) to I(f) should be ensured with probability 1.

5
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Introduce the following notation

I(fn, sn)
def
=

sn∫
−sn

ϕ
(
x, fn(x), f ′n(x), . . . , f (m)

n (x)
)
dx,

I1
def
=

∣∣∣∣ ∫
|x|≥sn

ϕ
(
x, f(x), f ′(x), . . . , f (m)(x)

)
dx

∣∣∣∣,
I2

def
=

∣∣∣∣
sn∫

−sn

{
ϕ
(
x, f(x), . . . , f (m)(x)

)
− ϕ

(
x, fn(x), . . . , f (m)

n (x)
)}

dx

∣∣∣∣,
rijn (x)

def
=

sn∫
−sn

∣∣f̂ (i)
n (x)− f (i)

n (x)
∣∣ ∣∣f̂ (j)

n (x)− f (j)
n (x)

∣∣dx,
Rn

def
=

1

2

m∑
i,j=0

sn∫
−sn

ϕ(ij)(ỹm(x))
(
f̂ (i)
n (x)− f (i)

n (x)

)(
f̂ (j)
n (x)− f (j)

n (x)
)
dx,

where ỹm(x) is a point on the line connecting the points (defined below)

(x, fn(x), . . . , f
(m)
n (x)) and (x, f̂n(x), . . . , f̂

(m)
n (x)).

Introduce the notation

τ = max
0≤i≤m

{
1 + αi + |α0i|

}
, σ = max

0≤i, j≤m

{
βij + |β0ij|

}
, ρ = max{τ, σ},

θ = min
i,j

{
αi, α0i, βij, β0ij

}
, U(x; θ) =

{
x, if θ ≥ 0,

H−1(x), if θ < 0.

3 Results

Lemma 3.1. Let the conditions (f1)–(f3), (k1)–(k4), (h) and (ϕ1)–
(ϕ3) be satisfied.

If θ ≥ 0 and sn and hn are selected so that

hn ·
m∑
i=0

|sn|αi+1+α0i → 0 as n→∞, (10′)

then I2 → 0 as n→∞.

6
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If θ < 0, then under the conditions (f1)–(f4), (k1)–(k4), (h), (ϕ1)–

(ϕ3) and sn chosen hn so that

hn ·
m∑
i=0

|sn|αi+1V (α0i; sn)→ 0 as n→∞, (10′′)

we have I2 → 0 as n→∞.

Remark 3.1. This lemma implies that under the conditions (f1)–(f3),
(k1)–(k4), (h) and (ϕ1)–(ϕ3) the convergence I2 → 0 as n→∞ can take
place in the following cases: if θ ≥ 0, then sn and hn should be selected so
that we would have (10′), while if θ < 0, then if an additional condition is
satisfied (f4), sn and hn must be chosen so that (10′′) would take place. It
can be easily seen that in the last case (10′′) can be expressed as

hn ·
m∑
i=0

|sn|αi+1+α′0iHα′′

0i (sn)→ 0 for n→∞,

where α′0i denotes all nonnegative numbers from the numbers α0i, and α′′0i
are only negative ones out of the numbers α0i, i = 0, 1, . . . ,m.

Lemma 3.2. Let the conditions (f1)–(f3), (k1)–(k4), (h) be satisfied.
Then

rijn (x) = O
( log n

nh2m+1
n

)
. (11)

Lemma 3.3. If the conditions (f1)–(f4), (k1)–(k4), (h) and (ϕ1)–(ϕ3)
hold, then

Rn = O
(dm(sn) log n

nh2m+1
n

)
, (12)

where

dm(sn) =
m∑
i=0

m∑
j=0

|sn|βijV (β0ij; sn). (13)

Remark 3.2. This lemma results in the following estimators: if θ ≥ 0, then
condition (f4) is redundant and (13) takes the form

dm(sn) =
m∑
i=0

m∑
j=0

|sn|βij+β0ij ,

7
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and if θ < 0 then if condition (f4) is also satisfied, (13) takes the form

dm(sn) =
m∑
i=0

m∑
j=0

|sn|βij+β
′
0ijHβ′′0ij(sn),

where β′0ij denotes nonnegative numbers out of the numbers β0ij, and β′′0ij
are negative ones out of the numbers β0ij, i = 0, 1, . . . ,m.

Theorem 3.1. Let the conditions (f1)–(f3), (k1)–(k4), (h) and (ϕ1)–
(ϕ3) hold and for hn we have

(A)
log n

nh2m+2
n

→∞;

(B)
log n

nh2m+1+δ
n

→ 0 for any 0 ≤ δ < 1.

Let also sn = U(h
− 1

1+ρ
n ; θ). Then for the convergence (f̂n, sn)→ I(f) with

probability 1, it is sufficient that the condition:

(i) θ ≥ 0 is satisfied

or

(ii) if θ < 0, then, in addition to the above-listed conditions, condition (f4)
should also hold.

Remark 3.3. This theorem extends the known results on the consistency of
the plug-in-estimator for particular integral functional of probability distri-
bution density given in [9, 10, 11, 13, 14].

Theorem 3.2. Let the conditions of Theorem 3.1 hold, f ∈ C2m(R) and the
sequence of positive numbers hn monotonically converge to zero, so that con-

ditions (A) and (B) of Theorem 3.1 are satisfied. Hence if sn = U(h
− 1

1+ρ
n ; θ),

then √
n
{
I(f̂n, sn)− I(fn)

}
d−→ N

(
0, σ2(f)

)
.

8
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4 Proofs

Proof of Lemma 3.1. We have

I2 ≤
sn∫

−sn

∣∣∣∣ m∑
i=0

ϕ(i)

(
x, f̃n(x), . . . , f̃ (m)

n (x)
)(
f (i)(x)− f (i)

n (x)
)∣∣∣∣ dx,

where (x, f̃n(x), . . . , f̃
(m)
n (x)) is a point on an interval connecting the points

(x, f(x), . . . , f (m)(x)) and (x, fn(x), . . . , f
(m)
n (x)). Here

f̃ (i)
n (x) = f (i)(x) + θ(f (i)

n (x)− f (i)(x)), 0 ≤ θ ≤ 1, i = 0, 1, . . . ,m.

Then by virtue of condition (ϕ2)

I2 ≤
sn∫

−sn

m∑
i=0

|x|αi |f̃n(x)|
α0i · · · |f̃ (m)

n (x)|αmi
∣∣f (i)(x)− f (i)

n (x)
∣∣ dx. (14)

Since according to (f2) we have sup
x∈R
|f (k)(x)| ≤ Cf <∞, k = 1, . . . ,m, then

(9) results in
sup
x∈R
|f (k)
n (x)| ≤ Cf <∞, k = 0, 1, . . . ,m.

Hence we can estimate f̃
(i)
n (x):

sup
x∈R

∣∣f̃ (i)
n (x)

∣∣ ≤ 3Cf . (15)

Bhattacharya’s paper [3] also implies that we can choose a constant C, so
that for all 0 ≤ i ≤ m we have

sup
x∈R

∣∣f (i)(x)− f (i)
n (x)

∣∣ < Chn. (16)

With (15) and (16) in mind, (14) implies

I2 ≤
m∑
i=0

(3Cf )
α′i |sn|αi

sn∫
−sn

|f̃n(x)|α0i
∣∣f (i)(x)− f (i)

n (x)
∣∣ dx ≤

≤ const · hn ·
m∑
i=0

|sn|αi
sn∫

−sn

|f̃n(x)|α0i dx, (17)

9
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where α′i denotes the sum of all positive orders of αki in (14).

Some of the orders of α0i are positive while the others are negative. But
in any case

|f̃n(x)|α0i ≤ C · V (αoi, sn).

Therefore (17) implies

I2 ≤ const · hn ·
m∑
i=0

|sn|αi+1V (αoi, sn).

It is evident that if sn and hn are taken so that

hn ·
m∑
i=0

|sn|αi+1V (α0i; sn)→ 0 for n→∞,

then I2 → 0 as n→∞.

Proof of Lemma 3.2. For the proof we use the technique of paper [13].
Let Wm be the Sobolev space of functions from L2(R) with continuous

derivatives up to the mth order inclusive with the norm

‖g‖m =

√√√√√ m∑
j=0

∞∫
−∞

|g(j)(x)|2 dx .

The space Wm has a scalar product

(g1, g2)m =
m∑
j=0

∞∫
−∞

g
(j)
1 (x)g

(j)
2 (x) dx.

Let
rn(m) = ‖f̂n − fn‖2m

and

Yi = Yi(x) =
1

n

{
1

hn
K
(x−Xi

hn

)
− fn(x)

}
.

Then

n∑
i=1

Yi(x) =
1

n

n∑
i=1

{
1

hn
K
(x−Xi

hn

)
− fn(x)

}
= f̂n(x)− fn(x).

10
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Hence

rn(m) =
∥∥∥ n∑
i=1

Yi(x)
∥∥∥2
m
. (18)

Estimate the function

gi = gi(x) =
1

nhn
K
(x−Xi

hn

)
through the norm ‖ · ‖m for every i = 1, . . . , n. We have

‖gi‖2m =
m∑
j=0

1

n2

∞∫
−∞

(
1

hj+1
n

K(j)
(x−Xi

hn

))2

dx =

=
1

n2

m∑
j=0

1

h2j+1
n

∞∫
−∞

(
K(j)

(x−Xi

hn

))2

d
x−Xi

hn
≤

≤ 1

n2h2m+1
n

m∑
j=0

∞∫
−∞

(
K(j)(u)

)2
du.

Thus

‖gi‖m ≤
1

nh
m+1/2
n

‖K‖m
def
= An. (19)

According to (k3), (k4), ‖K‖m is finite. From (19) we have

‖Yi‖m ≤ ‖gi‖m + E‖gi‖m ≤ 2An. (20)

In order to estimate rn(m), we apply McDiarmid’s inequality, which for con-
venience will be stated below.

McDiarmid’s inequality. Let L(y1, . . . , yk) be a real function such
that for each i = 1, . . . ,m and some ci, the supremum in y1, . . . , yk, y, of the
difference∣∣∣L(y1, . . . , yi−1, yi, yi+1, . . . , yk)− L(y1, . . . , yi−1, y, yi+1, . . . , yk)

∣∣∣ ≤ ci.

Further, if Y1, . . . , Yk are independent random variables taking values in the
domain of the function L(y1, . . . , yk), then for every t > 0,

P
{∣∣L(Y1, . . . , Yk)− EL(Y1, . . . , Yk)

∣∣ ≥ t
}
≤ 2e

− 2t2

k∑
i=1

c2
i .
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We will apply McDiarmid’s inequality to the expression

L(Y1, . . . , Yn) =
∥∥∥ n∑
i=1

Yi

∥∥∥
m

and ci = 4An for i = 1, . . . , n. For any t > 0, taking into account (20), we
have

P

{∣∣∣∣∥∥∥ n∑
i=1

Yi

∥∥∥
m
− E

∥∥∥ n∑
i=1

Yi

∥∥∥
m

∣∣∣∣ ≥ t

}
≤ 2 exp

{
− t2nh2m+1

n

2‖K‖2m

}
. (21)

Substitute

t =
2‖K‖m

√
log n√

nh2m+1
n

in (21) and apply the Borel–Cantelli lemma. Then, with probability 1, we
have ∥∥∥ n∑

i=1

Yi

∥∥∥
m

= E
∥∥∥ n∑
i=1

Yi

∥∥∥
m

+O

( √
log n√
nh2m+1

n

)
. (22)

Now estimate
∥∥ n∑
i=1

Yi
∥∥2
m

. In order to do this, apply Jensen’s inequality

(
E
∥∥∥ n∑
i=1

Yi

∥∥∥
m

)2
≤ E

∥∥∥ n∑
i=1

Yi

∥∥∥2
m

=
n∑
i=1

m∑
j=0

∞∫
−∞

(
Y

(j)
i (x)

)2
dx ≤

≤ 1

n2

n∑
i=1

m∑
j=0

∞∫
−∞

E

{
1

hj+1
n

K(j)
(x−Xi

hn

)
− f (j)

n (x)

}2

dx ≤

≤ 1

n2

n∑
i=1

m∑
j=0

{ ∞∫
−∞

E

(
1

hj+1
n

K(j)
(x−Xi

hn

))2

dx

}2

≤

≤ 1

n2h2m+2
n

n∑
i=1

m∑
j=0

{ ∞∫
−∞

E

(
K(j)

(x−Xi

hn

))2

dx

}
=

=
1

n2h2m+2
n

n∑
i=1

m∑
j=0

∞∫
−∞

∞∫
−∞

(K(j))2
(x− y

hn

)
f(y) dy dx ≤

≤ Cf
nh2m+1

n

‖K‖2m. (23)
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It follows from (18), (22) and (23) that rn(m) = O( logn

nh2m+1
n

) almost every-

where.

Proof of Lemma 3.3. We have

Rn =
1

2

m∑
i,j=0

sn∫
−sn

ϕ(ij)(ỹm(x))
(
f̂ (i)
n (x)− f (i)

n (x)
)(
f̂ (j)
n (x)− f (j)

n (x)
)
dx, (24)

where ỹm(x) is a point on the line connecting the points(
x, fn(x), . . . , f (m)

n (x)
)

and
(
x, f̂n(x), . . . , f̂ (m)

n (x)
)
.

Estimate Rn. It follows from (8) that under the condition

log log n

nh2m+1
n

→ 0, n→∞

we have
−Cf ≤ f̂ (i)

n (x) ≤ Cf , i = 0, 1, . . . ,m. (25)

Therefore by virtue of (f2), (ϕ3), (24) leads to

|Rn| ≤
1

2
Cϕ

m∑
i,j=0

sn∫
−sn

|x|βij |ỹ0(x)|β0ij · · · |ỹm(x)|βmij×

×
∣∣ f̂ (i)

n (x)− f (i)
n (x)

∣∣ ∣∣f̂ (j)
n (x)− f (j)

n (x)
∣∣ dx.

This implies

|Rn| ≤ C
m∑

i,j=0

C
β′ij
f |sn|

βij×

×
sn∫

−sn

|ỹ0(x)|β0ij
∣∣f̂ (i)
n (x)− f (i)

n (x)
∣∣ ∣∣f̂ (j)

n (x)− f (j)
n (x)

∣∣ dx, (26)

where β′ij denotes a sum of positive numbers orders: β′ij = β1ij + · · ·+ βmij.
Some of the numbers β0ij are positive, others are negative. In any case

|f̃n(x)|β0ij ≤ C · V (β0ij, sn).
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Then (26) results in

|Rn| ≤ const ·
m∑
i=0

m∑
j=0

|sn|βijV (β0ij, sn)rijn (x). (27)

But by virtue of Lemma 3.2 we have rijn = O( logn

nh2m+1
n

), therefore (27) gives

Rn = O
(dm(sn) log n

nh2m+1
n

)
,

where

dm(sn) =
m∑
i=0

m∑
j=0

|sn|βijV (β0ij; sn).

Proof of Theorem 3.1. Note that∣∣I(f)− I(f̂n, sn)
∣∣ ≤ ∣∣I(f)− I(fn, sn)

∣∣+
∣∣I(f̂n, sn)− I(fn, sn)

∣∣, (28)

where

I(fn, sn) =

sn∫
−sn

ϕ
(
x, fn(x), f ′n(x), . . . , f (m)

n (x)
)
dx.

Furthermore

∣∣I(f)− I(fn, sn)
∣∣ ≤ ∣∣∣∣ ∫

|x|≥sn

ϕ
(
x, f(x), f ′(x), . . . , f (m)(x)

)
dx

∣∣∣∣+
+

∣∣∣∣
sn∫

−sn

{
ϕ
(
x, f(x), . . . , f (m)(x)

)
− ϕ

(
x, fn(x), . . . , f (m)

n (x)
)}

dx

∣∣∣∣ + I1 + I2.

Condition (ϕ3) implies that I1 → 0 as sn → ∞. In order to establish
the convergence I2 → 0, we verify the fact that under the conditions of the
theorem Lemma 3.1 is true. Suppose θ ≥ 0. Then

hn ·
m∑
i=0

|sn|αi+1V (α0i; sn) ≤

≤ const ·m · hn · sτn = const ·m · h
1+ρ−τ
1+ρ

n −→ 0 as n→∞.
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Now assume that θ < 0. Then

hn ·
m∑
i=0

|sn|αi+1V (α0i; sn) ≤

≤
m∑
i=0

Hαi+1+|αoi|(sn) ≤ m ·Hτ (sn) = mh
1+ρ−τ
ρ+1

n −→ 0 as n→∞.

Hence the conditions of Lemma 3.1 can be satisfied. Thus I2 → 0.
In (28) we have

I(f̂n, sn)− I(fn, sn) = Sn(hn) +Rn =

=
m∑
i=0

sn∫
−sn

ϕ(i)

(
x, fn(x), . . . , f (m)

n (x)
)(
f̂ (i)
n (x)− f (i)

n (x)
)
dx+Rn, (29)

with

Rn =
1

2

m∑
i,j=0

sn∫
−sn

ϕ(ij)(ỹm(x))
(
f̂ (i)
n (x)− f (i)

n (x)
)(
f̂ (j)
n (x)− f (j)

n (x)
)
dx, (30)

where ỹm(x) is a point on the line connecting the points(
x, fn(x), . . . , f (m)

n (x)
)

and
(
x, f̂n(x), . . . , f̂ (m)

n (x)
)
.

By virtue of Lemma 3.3

Rn = O
(dm(sn) log n

nh2m+1
n

)
,

where

dm(sn) =
m∑
i=0

m∑
j=0

|sn|βijV (β0ij; sn).

Let θ ≥ 0. Then

m∑
i=0

m∑
j=0

|sn|βijV (β0ij; sn) ≤ const ·m · sσn.
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Consequently,

dm(sn) log n

nh2m+1
n

≤ const · log n

nh
2m+1+ σ

1+ρ
n

→ 0 as n→∞.

Let θ < 0. Then

m∑
i=0

m∑
j=0

|sn|βijV (β0ij; sn) ≤
m∑

i,j=0

Hβij+|β0ij |(sn) ≤ m2 ·Hσ(sn) = m2h
− σ
ρ+1

n .

Therefore

log n

nh2m+1
n

m2h
− σ
ρ+1

n =
m2 log n

nh
2m+1+ σ

ρ+1
n

→ 0 as; n→∞.

Consequently, Rn → 0 with probability 1 as n→∞.
Now estimate the main summand

Sn(hn) =
m∑
i=0

sn∫
−sn

ϕ(i)

(
x, fn(x), . . . , f (m)

n (x)
)(
f̂ (i)
n (x)− f (i)

n (x)
)
dx. (31)

Let

Zi(hn) +
m∑
j=0

sn∫
−sn

ϕ(j)

(
x, fn(x), . . . , f (m)

n (x)
) 1

hj+1
n

K(j)
(x−Xi

hn

)
dx.

Sn(hn) can be represented as a sum of independent random variables

Sn(hn) =
1

n

n∑
i=1

{
Zi(hn)− EZi(hn)

}
.

[−k,k] is the smallest interval containing the support of the function K(x)
(the existence of such an interval follows from (k4). Bearing condition (ϕ3)
in mind, we write

|Zi(hn)| ≤

≤ Cϕ

m∑
j=0

sn∫
−sn

|x|αj |fn(x)|α0j · · · |f (m)
n (x)|αmj 1

hj+1
n

K(j)
(x−Xi

hn

)
dx.
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Therefore

|Zi(hn)| ≤ const ·
m∑
j=0

|sn|αj V (α0j; sn)

sn∫
−sn

1

hj+1
n

K(j)
(x−Xi

hn

)
dx. (32)

Note that for a sufficiently large nwe have sn > k. Hence from (32) we have

|Zi(hn)| ≤ const ·
m∑
j=0

1

hj+1
n

k∫
−k

K(j)
(x−Xi

hn

)
dx ≤ Bh−mn .

For a sufficiently large n and some B.
Now we apply McDiarmid’s inequality to the value

Sn(hn) =
1

n

n∑
i=1

{
Zi(hn)− EZi(hn)

}
.

We have

P
{
|Sn(hn)| > t

}
≤ 2 exp

{
− nt2h2mn

2B2

}
.

Take

t =
2B
√

log n√
nhmn

.

We obtain

P

{
|Sn(hn)| > 2B

√
log n√
nhmn

}
≤ 2 exp{−2 log n}.

According to the Borel–Cantelli lemma, with probability 1, we have

Sn(hn) = O

(√
log n

nh2mn

)
.

Note that condition (B) implies the convergence

log n

nh2mn
→ 0 as n→∞.

Hence Sn(hn) → 0 with probability 1 as n → ∞. This completes the proof
of the theorem.
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Proof of Theorem 3.2. Remember the representation

I(f̂n, sn)− I(fn, sn) = Sn(hn) +Rn =

=
m∑
i=0

sn∫
−sn

ϕ(i)

(
x, fn(x), . . . , f (m)

n (x)
)(
f̂ (i)
n (x)− f (i)

n (x)
)
dx+Rn.

If

Zi(hn) +
m∑
j=0

sn∫
−sn

ϕ(j)

(
x, fn(x), . . . , f (m)

n (x)
) 1

hj+1
n

K(j)
(x−Xi

hn

)
dx,

thenSn(hn) can be represented as a sum of independent random variables

Sn(hn) =
1

n

n∑
i=1

{
Zi(hn)− EZi(hn)

}
.

Our aim is to find moments of the value Sn(hn).
We have

EZi(hn) =

=
m∑
j=0

∞∫
−∞

{ sn∫
−sn

ϕ(j)

(
x, fn(x), . . . , f (m)

n (x)
) 1

hj+1
n

K(j)
(x− y

hn

)
dx

}
f(y) dy =

=
m∑
j=0

∞∫
−∞

{ −y+sn
hn∫

−y−sn
hn

ϕ(j)

(
y + uhn, fn(y + uhn), . . . , f (m)

n (y + uhn)
)
×

× 1

hjn
K(j)(u) du

}
f(y) dy. (33)

As n increases, by virtue of property (k4), in the inner integral of formula
(33) the integration limits are −k and k. Apply the integration by parts
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formula several times. Then we can write

k∫
−k

ϕ(j)

(
y + uhn, fn(y + uhn), . . . , f (m)

n (y + uhn)
) 1

hjn
K(j)(u) du =

= (−1)j
k∫

−k

1

hjn

dj

duj
ϕ(j)

(
y + uhn, fn(y + uhn), . . . , f (m)

n (y + uhn)
)
K(u) du.

For n→∞, hn ↓ 0 and

1

hjn

dj

duj
ϕ(j)

(
y + uhn, fn(y + uhn), . . . , f (m)

n (y + uhn)
)
−→

−→ dj

dyj
ϕ(j)

(
y, f(y), . . . , f (m)(y)

) def
= ϕ

(j)
(j)(y).

Denote

qm(y) =
m∑
j=0

(−1)jϕ
(j)
(j)(y).

Then we see that as n→∞

EZi(hn) −→
∞∫

−∞

{ m∑
j=0

(−1)jϕ
(j)
(j)(y)

}
f(y) dy =

=

∞∫
−∞

qm(y)f(y) dy = Eqm(X).

Now, let 0 ≤ j, v ≤ m. Consider the value

µj,v(y) =

sn∫
−sn

sn∫
−sn

ϕ(j)

(
x, fn(x), . . . , f (m)

n (x)
)
ϕ(v)

(
z, fn(z), . . . , f (m)

n (z)
)
×

× 1

h2+j+vn

K(j)
(x− y

hn

)
K(v)

(z − y
hn

)
dx dz.
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For a large enough n

µj,v(y) =

k∫
−k

k∫
−k

ϕ(j)

(
y + uhn, fn(y + uhn), . . . , f (m)

n (y + uhn)
)
×

× ϕ(v)

(
y + τhn, fn(y + τhn), . . . , f (m)

n (y + τhn)
)
×

× 1

hj+vn

K(j)(u)K(v)(τ) du dτ.

Hence we conclude that

Eµj,v(y) −→ (−1)j+v
∞∫

−∞

ϕ
(j)
(j)(y)ϕ

(v)
(v)(y)f(y) dy.

Respectively,

EZ2
i (hn) =

m∑
j=0

m∑
v=0

∞∫
−∞

µj,v(y)f(y) dy.

So we can conclude that as n→∞

EZ2
i (hn) −→

m∑
j=0

m∑
v=0

(−1)j+v
∞∫

−∞

ϕ
(j)
(j)(y)ϕ

(v)
(v)(y)f(y) dy =

=

∞∫
−∞

q2m(y)f(y) dy = Eq2m(X).

Quite similarly we can show that as n→∞

EZ4
i (hn)→

∞∫
−∞

q4m(y)f(y) dy = Eq4m(X).

After these computations we can arrive at the conclusion that under the
above-stated conditions as n→∞, hn → 0

nVar(Sn(hn)) = Var(Zi(hn)) −→ Var(qm(f(X)))
def
= σ2(f) <∞

and EZ4
i (hn)→ Eq4m(X) <∞.

A reference to Lyapunov’s central limit theorem completes the proof.
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5 Some Examples

(i)

Consider the integral functional

IF,k(f) =

∞∫
−∞

(f ′(x))2k

f(x)
dx, k ≥ 1.

We will estimate this integral by means of

IF,k(f̂n, sn) =

sn∫
−sn

(f̂n
′(x))2k

f̂n(x)
dx, k ≥ 1,

where

f̂n(x) =
1

nhn

n∑
i=1

K
(x−Xi

hn

)
, f̂n

′(x) =
1

nh2n

n∑
i=1

K ′
(x−Xi

hn

)
.

In this case m = 1,

ϕ(x, x0, x1) = x−10 x2k1 ,
∂ϕ

∂x0
= −x−20 x2k1 ,

∂ϕ

∂x1
= 2kx−10 x2k−11 ,

∂2ϕ

∂x21
= 2k(2k − 1)x−10 x2k−21 ,

∂2ϕ

∂x20
= 2x−30 x2k1 ,

∂2ϕ

∂x0∂x1
= −2kx−20 x2k−11 ,

Cϕ = 2k(2k − 1), α0 = α1 = = β00 = β01 = β10 = β11 = 0, α00 = −2,

α10 = 2k, α01 = −1, α11 = 2k − 1, θ < 0,

β000 = −3, β100 = 2k, β001 = −2, β101 = 2k − 1, β010 = −2,

β110 = 2k − 1, β011 = −1, β111 = 2k − 2,

σ = 3, τ = 3, ρ = 3, sn = H−1
(
h
− 1

4
n

)
.

For example, we can take hn = n−
9
40 as hn then sn = H−1(n

9
160 ). In, partic-

ular, examples we often have H(x) = 3ex
2
. Then sn =

√
log 1

3
n

9
160 . Note

that this sequence diverges rather slowly.
However, under conditions (f1)–(f4), (k1)–(k4) Theorem ?? is true

and we have IF,k(f̂n, sn) → IF,k(f) with probability 1. If k = 1, we have
Fisher’s information function.
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In the central limit theorem for the Fisher information integral IF (f) we

have

σ2(f) = Var
(f ′(X))2 + 2f ′′(X)f(X)

(f(X))2
.

(ii)

Consider the integral

IS,δ(f) =

∞∫
−∞

f δ(x) log f(x)x, 0 < δ ≤ 1,

which will be estimated by means of

IS,δ(f̂n, sn) =

sn∫
−sn

f̂ δn (x) log f̂n(x) dx,

where

f̂n(x) =
1

nhn

n∑
i=1

K
(x−Xi

hn

)
.

In this case m = 0 and

ϕ(x, x0, . . . , xm) = xδ0 log x0.

Then

dϕ

dx0
= xδ−10 (log x0 + 1) < ex2δ−10 ,

d2ϕ

dx20
= xδ−20

(
δ(δ − 1) log x0 + 2δ − 1

)
< e2δ−1xδ

2−2
0 ,

Cϕ = e, α0 = 0, α00 = 2δ − 1, β00 = 0, β000 = δ2 − 2, θ < 0,

τ = 2− 2δ, σ = 2− δ2, ρ = 2− δ2, sn = H−1(h
− 1

3−δ2
n ).

For example, one can take hn = n−
5
12 for hn. Then the conditions of The-

orem 3.2 are satisfied. Under conditions (f1)–(f4), (k1)–(k4) we have

IF (f̂n, sn) → IF (f) with probability 1. For k = 1 we have Shannon’s en-
tropy.
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In the central limit theorem we have

σ2(f) = Var log f(X)

for Shannon’s entropy integral.

(iii)

Consider the integral

I(f ; γ) =

∞∫
−∞

xγ(f ′(x))2 dx, γ ≥ 0.

The estimator of this interval has the form

In(f̂n; γ) =

sn∫
−sn

xγ(f̂ ′n(x))
2
, f̂n

′(x) =
1

nh2n

n∑
i=1

K ′
(x−X i

hn

)
.

We have m = 1,

ϕ(x, x0, x1) = xγx21,
∂ϕ

∂x1
= 2xγx1,

∂2ϕ

∂x21
= 2xγ,

Cϕ = 2, α0 = 0, α1 = γ, α00 = 0, α01 = 0, α10 = 0, α11 = 1,

β00 = 0, β01 = 0, β10 = 0, β11 = γ, β000 = 0,

β001 = 0, β010 = 0, β011 = 0, β100 = 0, β101 = 0,

β110, β111 = 0, θ > 0, τ = 1 + γ, σ = γ, ρ = 1 + γ, sn = h
− 1

2+γ
n .

Condition (f4) is redundant. One can take hn = n−δ as hn, where 1
5
< δ < 1

4
.

By virtue of Theorem 3.1, we have In(f̂n; γ)→ I(f ; γ) with probability 1.
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