On one problem of American option pricing

Babilua P., Gogolashvili D., Dochviri B., Jaoshvili V.

Ivane Javakhishvili Tbilisi State University, Faculty of Exact and Natural Sciences, Department of Mathematics, 3 Chavtchavadze Ave, Tbilisi 0179, Georgia

Consider (B_n, S_n) -market, whose dynamic describe by the model

$$B_{n} = (1+r)B_{n-1}, \quad n \ge 1, \quad B_{0} > 0;$$

$$S_{n} = (1+\rho_{n})S_{n-1}, \quad n \ge 1, \quad S_{0} > 0,$$
(1)

where r > 0 is compound interest rate, ρ_n take values $\lambda^{-1} - 1$ or $\lambda - 1$, $\lambda > 0$. The payoff of an option is given by the expression [1]: $f_{\tau(\omega)}(\omega) = \beta^{\tau(\omega)} \max_{k \le \tau} S_k(\omega)$. In investent process we are consider the following type of income (expenses) $g_n = c_1 \beta_n B_{n-1} + c_2 \gamma_n S_{n-1}$, where $\pi_n = (\beta_n, \gamma_n)$ is non-self-financing portfolio, $0 < c_1 < 1, 0 < c_2 < 1$.

The fair price of an option can be written in the form:

$$C^* = \sup_{\tau} E^* \alpha^{\tau} f_{\tau} = S_0 \sup_{\tau} \tilde{E} \beta^{\tau} X_{\tau}, \qquad (2)$$

where the expectations are taken by the directly constructed martingale measures \tilde{P} and P^* , and X_n is some markov sequence.

Theorem. The following statements are fulfilled:

a) optimal stopping moment have the following form

$$\tau^* = \inf\{n \ge 0 \colon X_n \in [\lambda^k, \infty)\}, \quad k > 0, \tag{3}$$

b) the fair price can be computed by the equality

$$C^* = S_0 c, \quad c > 0.$$
 (4)

Acknowledgement. The work is supported by Shota Rustaveli National Science Foundation Grants No FR/308/5-104/12, SC/68/5-104/14.

References

[1]. Д. О. Крамков., А. Н. Ширяев., О расчетах рациональной стоимости "Русского опциона" в симметричной биномиальной модели (B,S)-рынка, ТВП, 39:1 (1994), 191–200.