On almost everywhere divergence of generalized Cesáro means of trigonometric Fourier series

Teimuraz Akhobadze, Shalva Zviadadze

e-mail: takhoba@gmail.com
e-mail: sh.zviadadze@gmail.com
Department of Mathematics, Faculty of Exact and Natural Sciences, Ivane Javakhishvili Tbilisi State University, 13, University St., Tbilisi, Georgia

Let $\left(\alpha_{n}\right)$ and $\left(S_{n}\right)$ be a sequence of real numbers, where $\alpha_{n}>-1, n \in \mathbb{N}$, and

$$
\begin{equation*}
\sigma_{n}^{\alpha_{n}} \equiv \sum_{\nu=0}^{n} A_{n-\nu}^{\alpha_{n}-1} S_{\nu} / A_{n}^{\alpha_{n}}, \tag{1}
\end{equation*}
$$

where

$$
A_{k}^{\alpha_{n}}=\left(\alpha_{n}+1\right)\left(\alpha_{n}+2\right) \cdot \ldots \cdot\left(\alpha_{n}+k\right) / k!
$$

It is clear that $\sigma_{n}^{0}=S_{n}$. If $\left(\alpha_{n}\right)$ is a constant sequence $\left(\alpha_{n}=\alpha, n \in \mathbb{N}\right)$ then $\sigma_{n}^{\alpha_{n}}$ coincides with the usual Cesáro σ_{n}^{α}-means [10]. If in (1) instead of S_{ν} we substitute partial sums $S_{\nu}(f, x)$ of the Fourier series of a function f with respect to the trigonometric system then the corresponding means $\sigma_{n}^{\alpha_{n}}$ is denoted by $\sigma_{n}^{\alpha_{n}}(f, x)$.

These means were studied by Kaplan [4]. The author compared the methods of summability $\left(C, \alpha_{n}\right)$ and (C, α), and obtained necessary and sufficient conditions, in terms of the α_{n}, for the inclusion $\left(C, \alpha_{n}\right) \subset(C, \alpha)$, and sufficient conditions for $(C, \alpha) \subset\left(C, \alpha_{n}\right)$. Later Akhobadze ([1]-[3]) and Tetunashvili ([6]-[9]) investigated problems of (C, α_{n}) summability of trigonometric Fourier series.

In our talk we explore behaviour of $\left(C, \alpha_{n}\right)$-means of trigonometric Fourier series of integrable functions for sequences α_{n}. In particular we extend Kolmogorov's [5] well known theorem on a.e. divergence of trigonometric Fourier series.
Theorem 1. For any $\alpha_{n} \rightarrow 0+, n \rightarrow+\infty$, there exists function $f \in L[0 ; 2 \pi]$ such that

$$
\limsup _{n \rightarrow+\infty}\left|\sigma_{n}^{\alpha_{n}}(f, x)\right|=+\infty \quad \text { almost everwhere. }
$$

Theorem 2. Let $f \in L(0 ; 2 \pi)$ and $\alpha_{n} \rightarrow 0, n \rightarrow+\infty$. Then for almost every $x \in(0 ; 2 \pi)$

$$
\lim _{n \rightarrow+\infty} \alpha_{n} \sigma_{n}^{\alpha_{n}}(f, x)=0
$$

Remark 3. Let $\alpha_{n} \downarrow 0$ and $\alpha_{n} \cdot \ln n \uparrow+\infty, n \rightarrow+\infty$. Then for any sequence ψ_{n} such that $\psi_{n} \uparrow+\infty$ and $\alpha_{n} \cdot \psi_{n} \rightarrow 0, n \rightarrow+\infty$, there exists a function f for which

$$
\limsup _{n \rightarrow+\infty}\left|\alpha_{n} \cdot \psi_{n} \cdot \sigma_{n}^{\alpha_{n}}(f, x)\right|=+\infty \quad \text { almost everywhere. }
$$

References

[1] T. Akhobadze, On generalized Cesáro summability of trigonometric Fourier series, Bull. Georgian Acad. Sci., 170 (2004), no. 1, $23-24$.
[2] T. Akhobadze, On the convergence of generalized Cesáro means of trigonometric Fourier series. I, II, Acta Math. Hungar., (1-2) 115 (2007), 59 - 100.
[3] T. Akhobadze, On a theorem of M. Satô, Acta Math. Hungar., (3) 130 (2011), 286 - 308.
[4] I. Kaplan, Cesáro means of variable order, Izv. Vyssh. Uchebn. Zaved. Mat., 18 (1960), no. 5, 62 - 73. (Russian)
[5] A. Kolmogorov, Une série de Fourier-Lebesgue divergente presque partout, Fundamenta Mathematicae, 4 (1923), 324 - 328.
[6] Sh. Tetunashvili, On iterated summability of trigonometric Fourier series, Proc. A. Razmadze Math. Inst. 139 (2005), 142 - 144.
[7] Sh. Tetunashvili, On the summability of Fourier trigonometric series of variable order, Proc. A. Razmadze Math. Inst. 145 (2007), $130-131$.
[8] Sh. Tetunashvili, On divergence of Fourier trigonometric series by some methods of summability with variable orders, Proc. A. Razmadze Math. Inst. 155 (2011), 130 - 131.
[9] Sh. Tetunashvili, On divergence of Fourier series by some methods of summability, Journal of Function Spaces and Applications, vol. 2012, Article ID 542607, 9 pages.
[10] A. Zigmund, Trigonometric series, Cambridge University Press, Vol. 1 (1959).

