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Let (αn) and (Sn) be a sequence of real numbers, where αn > −1, n ∈ N, and

σαn
n ≡

n∑
ν=0

Aαn−1
n−ν Sν/A

αn
n , (1)

where
Aαn

k = (αn + 1)(αn + 2) · ... · (αn + k)/k!.

It is clear that σ0n = Sn. If (αn) is a constant sequence (αn = α, n ∈ N) then σαn
n coincides

with the usual Cesáro σαn -means [10]. If in (1) instead of Sν we substitute partial sums Sν(f, x) of
the Fourier series of a function f with respect to the trigonometric system then the corresponding
means σαn

n is denoted by σαn
n (f, x).

These means were studied by Kaplan [4]. The author compared the methods of summability
(C,αn) and (C,α), and obtained necessary and sufficient conditions, in terms of the αn, for the
inclusion (C,αn) ⊂ (C,α), and sufficient conditions for (C,α) ⊂ (C,αn). Later Akhobadze ([1]-[3])
and Tetunashvili ([6]-[9]) investigated problems of (C,αn) summability of trigonometric Fourier
series.

In our talk we explore behaviour of (C,αn)-means of trigonometric Fourier series of integrable
functions for sequences αn. In particular we extend Kolmogorov’s [5] well known theorem on a.e.
divergence of trigonometric Fourier series.

Theorem 1. For any αn → 0+, n→ +∞, there exists function f ∈ L[0; 2π] such that

lim sup
n→+∞

|σαn
n (f, x)| = +∞ almost everwhere.

Theorem 2. Let f ∈ L(0; 2π) and αn → 0, n→ +∞. Then for almost every x ∈ (0; 2π)

lim
n→+∞

αnσ
αn
n (f, x) = 0.

Remark 3. Let αn ↓ 0 and αn ·lnn ↑ +∞, n→ +∞. Then for any sequence ψn such that ψn ↑ +∞
and αn · ψn → 0, n→ +∞, there exists a function f for which

lim sup
n→+∞

|αn · ψn · σαn
n (f, x)| = +∞ almost everywhere.
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