On almost everywhere divergence of generalized Cesáro means of trigonometric Fourier series

Teimuraz Akhobadze, Shalva Zviadadze

e-mail: takhoba@gmail.com

e-mail: sh.zviadadze@gmail.com

Department of Mathematics, Faculty of Exact and Natural Sciences, Ivane Javakhishvili Tbilisi State University, 13, University St., Tbilisi, Georgia

Let (α_n) and (S_n) be a sequence of real numbers, where $\alpha_n > -1$, $n \in \mathbb{N}$, and

$$\sigma_n^{\alpha_n} \equiv \sum_{\nu=0}^n A_{n-\nu}^{\alpha_n-1} S_\nu / A_n^{\alpha_n},\tag{1}$$

where

 $A_k^{\alpha_n} = (\alpha_n + 1)(\alpha_n + 2) \cdot \ldots \cdot (\alpha_n + k)/k!.$

It is clear that $\sigma_n^0 = S_n$. If (α_n) is a constant sequence $(\alpha_n = \alpha, n \in \mathbb{N})$ then $\sigma_n^{\alpha_n}$ coincides with the usual Cesáro σ_n^{α} -means [10]. If in (1) instead of S_{ν} we substitute partial sums $S_{\nu}(f, x)$ of the Fourier series of a function f with respect to the trigonometric system then the corresponding means $\sigma_n^{\alpha_n}$ is denoted by $\sigma_n^{\alpha_n}(f, x)$.

These means were studied by Kaplan [4]. The author compared the methods of summability (C, α_n) and (C, α) , and obtained necessary and sufficient conditions, in terms of the α_n , for the inclusion $(C, \alpha_n) \subset (C, \alpha)$, and sufficient conditions for $(C, \alpha) \subset (C, \alpha_n)$. Later Akhobadze ([1]-[3]) and Tetunashvili ([6]-[9]) investigated problems of (C, α_n) summability of trigonometric Fourier series.

In our talk we explore behaviour of (C, α_n) -means of trigonometric Fourier series of integrable functions for sequences α_n . In particular we extend Kolmogorov's [5] well known theorem on a.e. divergence of trigonometric Fourier series.

Theorem 1. For any $\alpha_n \to 0+$, $n \to +\infty$, there exists function $f \in L[0; 2\pi]$ such that

$$\limsup_{n \to +\infty} |\sigma_n^{\alpha_n}(f, x)| = +\infty \quad almost \ everwhere.$$

Theorem 2. Let $f \in L(0; 2\pi)$ and $\alpha_n \to 0$, $n \to +\infty$. Then for almost every $x \in (0; 2\pi)$

$$\lim_{n \to +\infty} \alpha_n \sigma_n^{\alpha_n}(f, x) = 0.$$

Remark 3. Let $\alpha_n \downarrow 0$ and $\alpha_n \cdot \ln n \uparrow +\infty$, $n \to +\infty$. Then for any sequence ψ_n such that $\psi_n \uparrow +\infty$ and $\alpha_n \cdot \psi_n \to 0$, $n \to +\infty$, there exists a function f for which

$$\limsup_{n \to +\infty} |\alpha_n \cdot \psi_n \cdot \sigma_n^{\alpha_n}(f, x)| = +\infty \quad almost \ everywhere$$

References

[1] T. Akhobadze, On generalized Cesáro summability of trigonometric Fourier series, Bull. Georgian Acad. Sci., **170** (2004), no. 1, 23 – 24.

[2] T. Akhobadze, On the convergence of generalized Cesáro means of trigonometric Fourier series. I, II, Acta Math. Hungar., (1-2) **115** (2007), 59 – 100.

[3] T. Akhobadze, On a theorem of M. Satô, Acta Math. Hungar., (3) 130 (2011), 286 – 308.

[4] I. Kaplan, *Cesáro means of variable order*, Izv. Vyssh. Uchebn. Zaved. Mat., **18** (1960), no. 5, 62 – 73. (Russian)

[5] A. Kolmogorov, Une série de Fourier-Lebesgue divergente presque partout, Fundamenta Mathematicae, 4 (1923), 324 – 328.

[6] Sh. Tetunashvili, On iterated summability of trigonometric Fourier series, Proc. A. Razmadze Math. Inst. **139** (2005), 142 – 144.

[7] Sh. Tetunashvili, On the summability of Fourier trigonometric series of variable order, Proc. A. Razmadze Math. Inst. **145** (2007), 130 – 131.

[8] Sh. Tetunashvili, On divergence of Fourier trigonometric series by some methods of summability with variable orders, Proc. A. Razmadze Math. Inst. 155 (2011), 130 – 131.

[9] Sh. Tetunashvili, On divergence of Fourier series by some methods of summability, Journal of Function Spaces and Applications, vol. 2012, Article ID 542607, 9 pages.

[10] A. Zigmund, Trigonometric series, Cambridge University Press, Vol.1 (1959).