ENGINEERING PROBLEMS AND TASKS IN EARTHQUAKE PREDICTION PROBLEM

LEV GHEONJIAN, ASSISTANT PROFESSOR TAMAR PAATASHVILI, PhD STUDENT

Measurement and Standardization Laboratory Electrical and Electronics Engineering Research Institute (IEEE TSU) Electrical and Electronics Engineering Department The Faculty of Exact and Natural Sciences Ivane Javakhishvili Tbilisi State University

JANUARY 2016

R. L. ACKOFF'S STAGES OF 4 INTERACTION WITH PROBLEMS (Russell L. Ackoff The Art of Problem Solving)

THE STUDY OF THE PROBLEM \implies REDESIGN OF KNOWLEDGE

EARTHQUAKE PREDICTION PROBLEM FROM ENGINEERING POINT OF VIEW: TO DETECT CRITICAL POINTS OF PROBLEM.

+ SOLVE SPECIFIC INTERDISCIPLINARY TEAM BUILDING PROBLEM

FROM HENOTIC INTEREST TO UNITING CULTURE

<u>ένωτικός</u> (henōtikós, "serving to unite").

CRITICAL POINT 1

EARTHQUAKE PREDICTION PROBLEM FROM ENGINEERING POINT OF VIEW: TO DETECT CRITICAL POINTS OF PROBLEM. CRITICAL POINT 2

DEMETER (Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions)

French micro-satellite, operated 2004 - 2010

CRITICAL POINT 2

RESPONSE 1. The "Attack" on the Paradigm : Development of Alternative - <u>External Synchronization Approach</u>, <u>Reveal and</u> <u>Study of Synchronizing Factors in Caucasus Region</u>.

RESPONSE 2. Natural Signals and Sensor Systems Analysis; Instrumentation Development, Standardization and Manufacturing; Regional Monitoring Network Development.

TIDAL SYNCHRONIZATION CONCEPT

Synchronizing Factors in Caucasus Region

9 Significant Tidal Components Derived from Caucasus M > 6 Earthquakes				
Period (days)	Calm width $(\Delta T/T\%)$	Astronomical sense	Frequency calculation	Comment
27.303	34.2	Lunar sidereal month	\$	Rotation frequency of: Moon –s, Perigee– <i>p</i> , Earth – h, Ascending Node – <i>N</i> .
13.65	25.2	1/2 of Lunar sidereal month	2s	
27.5449	27.9	Lunar anomalistic month	s-p	
29.513	30.0	Lunar synodical month	s-h	
347.93	31.6	Eclipse year	h+N	
173.56	25.7	1/2 of Eclipse year	2(h+N)	
411.18	30.2	Anomalistic year	h-p	
3177	21.5	Lunar orbit perigee revolution period	p	
1588.8	29.8	1/2 of Lunar orbit perigee revolution period	2p	

CONCLUSION: POSSIBLE EARTHQUAKE OCCURRENCE TIME INTERVALS FOR CAUCASUS REGION CAN BE CALCULATED

TIDAL SYNCHRONIZATION MODEL

Modulation and Load Difference Signals

IEEE TSU VLF MONITOR

M 6.0 EARTHQUAKE PRECURSOR, ONI, 07.09.2009, 100 km DISTANCE

2016 STEPS

4 IEEE TSU VLF MONITORS INSTALATION IN 2016. DETERMINATION OF NETWORK CELL OPTIMAL SIZE.