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ON THE SPACE OF SPHERICAL POLYNOMIAL WITH QUADRATIC FORMS
OF FIVE VARIABLES

Shavgulidze K.

Abstract. The spherical polynomials of order ν with respect to quadratic form of five vari-

ables are constructed and the basis of the spaces of these spherical polynomials is established.

The space of generalized theta-series is considered.
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Let

Q(X) = Q(x1, · · · , xr) =
∑

1≤i≤j≤r

bijxixj

be an integer positive definite quadratic form in an even number r of variables. To
Q(X) we associate the even integral symmetric r × r matrix A defined by aii = 2bii
and aij = aji = bij, where i < j. If X = [x1, · · · , xr]

T denotes a column vector, XT is
its transposition, then we have Q(X) = 1

2
XTAX. Let Aij denote the cofactor to the

element aij in D = detA and a∗ij the corresponding element of A−1.
A homogeneous polynomial P (X) = P (x1, · · · , xr) of degree ν with complex coef-

ficients, satisfying the condition

∑
1≤i,j≤r

a∗ij

( ∂2P

∂xi∂xj

)
= 0 (1)

is called a spherical polynomial of order ν with respect to Q(X) (see [1]), and

ϑ(τ, P,Q) =
∑
n∈Zr

P (n)zQ(n), z = e2πiτ , τ ∈ C, Im τ > 0

is the corresponding generalized r-fold theta-series.
Let P (ν,Q) denote the vector space over C of spherical polynomials P (X) of even

order ν with respect to Q(X). Hecke [2] calculated the dimension of the space P (ν,Q)
and showed that

dimP (ν,Q) =

(
ν + r − 1

r − 1

)
−
(
ν + r − 3

r − 1

)
and form the basis of the space of spherical polynomials of second order with respect
to Q(X).

For ν = 4, Lomadze [3] constructed the basis of the space of spherical polynomials
of the fourth order with respect to Q(X).

Our goal is to construct a basis of the space P (ν,Q) with a simpler way.
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Let

P (X) = P (x1, x2, x3, x4, x5) =
ν∑

k=0

k∑
i=0

i∑
j=0

j∑
l=0

akijlx
ν−k
1 xk−i

2 xi−j
3 xj−l

4 xl
5

be a spherical function of order ν with respect to the positive quadratic form
Q(x1, x2, x3, x4, x5) of five variables. Hence, according to condition (1) of spherical
function and considering all ∂2P

∂xi∂xj
, we obtain

A11(ν − k + 1)(ν − k)ak−1,i,j,l + 2A12(ν − k)(k − i)ak,i,j,l

+2A13(ν − k)(i− j + 1)ak,i+1,j,l + 2A14(ν − k)(j − l + 1)ak,i+1,j+1,l

+2A15(ν − k)(l + 1)ak,i+1,j+1,l+1 + A22(k − i)(k − i+ 1)ak+1,i,j,l

+2A23(k − i)(i− j + 1)ak+1,i+1,j,l + 2A24(k − i)(j − l + 1)ak+1,i+1,j+1,l

+2A25(k − i)(l + 1)ak+1,i+1,j+1,l+1 + A33(i− j + 1)(i− j + 2)ak+1,i+2,j,l

+2A34(i− j + 1)(j − l + 1)ak+1,i+2,j+1,l + 2A35(i− j)(l + 1)ak+1,i+2,j+1,l+1

+A44(j − l + 2)(j − l + 1)ak+1,i+2,j+2,l + 2A45(j − l + 1)(l + 1)ak+1,i+2,j+2,l+1

+A55(l + 2)(l + 1)ak+1,i+2,j+2,l+2 = 0

(2)

for 0 ≤ l ≤ j ≤ i < k ≤ ν − 1.
Let

L = [a0000, a1000, a1100, a1110, a1111, a2000, . . . , aνννν ]
T

be the column vector, where akijl (0 ≤ l ≤ j ≤ i ≤ k ≤ ν) are the coefficients of
polynomial P (X).

Conditions (2) in matrix notation have the following form S · L = 0, where the
matrix S (the elements of this matrix are defined from conditions (2)) have the form∥∥∥∥∥∥∥∥∥∥∥

A11(ν−1)ν 2A12(ν−1) 2A13(ν−1) 2A14(ν−1) 2A15(ν−1) 2A22 ... 0

0 A11(ν−1)ν ... ... ... ... ... 0

0 0 A11(ν−1)ν ... ... ... ... 0

0 0 0 A11(ν−1)ν ... ... ... 0

... ... ... ... ... ... ... ...

0 0 0 0 0 0 ... A55(ν−1)ν

∥∥∥∥∥∥∥∥∥∥∥
.

The number of rows of the matrix S is equal to
(
ν+2
4

)
and the number of columns of the

matrix S is equal to
(
ν+4
4

)
. Hence S is

(
ν+2
4

)
×

(
ν+4
4

)
matrix. We devide the matrix S

into two matrices S1 and S2. S1 is the left square nondegenerate
(
ν+2
4

)
×
(
ν+2
4

)
matrix, it

consists of the first
(
ν+2
4

)
columns of the matrix S; S2 is the right

(
ν+2
4

)
× (ν+1)(ν+2)(2ν+3)

6

matrix, it consists of the last
(
ν+4
4

)
−
(
ν+2
4

)
= (ν+1)(ν+2)(2ν+3)

6
columns of the matrix S.

Similarly, we devide the matrix L into two matrices L1 and L2. L1 is the
(
ν+2
4

)
× 1

matrix, it consists of the upper
(
ν+2
4

)
elements of the matrix L; L2 is the

(ν+1)(ν+2)(2ν+3)
6

×
1 matrix, it consists of the lower

(
ν+4
4

)
−
(
ν+2
4

)
= (ν+1)(ν+2)(2ν+3)

6
elements of the matrix

L.
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According to the new notation, the matrix equality has the form S1L1 + S2L2 = 0,
i.e. L1 = −S−1

1 S2L2. It follows from this equality that the matrix L1 is expressed
through the matrix L2, i.e., the first

(
ν+2
4

)
elements of the matrix L are expressed

through its other (ν+1)(ν+2)(2ν+3)
6

= t elements. Since the matrix L consists of the

coefficients of the spherical polynomial P (X), its first
(
ν+2
4

)
coefficients can be expressed

through the last (ν+1)(ν+2)(2ν+3)
6

= t coefficients.
Let Q(X) = Q(x1, x2, x3, x4, x5) be a quadratic form of five variables. We have,

dimP (ν,Q) =
(
ν+4
4

)
−
(
ν+2
4

)
.

We have thereby proved the following theorem.
Theorem 1. The polynomials (the coefficients of polynomial Pi are given in the

brackets)

P1(a
(1)
0000, a

(1)
1000, . . . , a

(1)
ν−2,ν−2,ν−2,ν−2, 1, 0, 0, . . . , 0),

P2(a
(2)
0000, a

(2)
1000, . . . , a

(2)
ν−2,ν−2,ν−2,ν−2, 0, 1, 0, . . . , 0),

. . . . . . . . . . . . . . . . . .

Pt(a
(t)
0000, a

(t)
1000, . . . , a

(t)
ν−2,ν−2,ν−2,ν−2, 0, 0, 0, . . . , 1),

where the first
(
ν+2
4

)
coefficients from a0000 to aν−2,ν−2,ν−2,ν−2 are calculated through

other (ν+1)(ν+2)(2ν+3)
6

= t coefficients, form the basis of the space P (ν,Q).

Consider the generalized r-fold theta-series ϑ(τ, P,Q) =
∑
n∈Zr

P (n)zQ(n), z = e2πiτ .

We have showed [4 - 6] that, the maximal number of linearly independent theta-
series for diagonal ternary quadratic forms with spherical polynomials of order ν is
ν
2
+ 1 and for diagonal quaternary quadratic forms is

( ν
2
+2
2

)
. Our goal is to construct

a basis of the space of generalized theta-series with spherical polynomial P of order ν
and diagonal quadratic form Q of five variables.

Construct the integral automorphisms U of the diagonal quadratic form

Q(X) = b11x
2
1 + b22x

2
2 + b33x

2
3 + b44x

2
4 + b55x

2
5.

An integral r×r matrix U is called an integral automorphism of the quadratic form
Q(X) in r variables if the condition UTAU = A is satisfied.

The integral automorphisms of the quadratic form Q(X) are

U =

∥∥∥∥∥∥∥∥∥∥
±1 0 0 0 0
0 ±1 0 0 0
0 0 ±1 0 0
0 0 0 ±1 0
0 0 0 0 ±1

∥∥∥∥∥∥∥∥∥∥
.

It is known ([1], p. 37) that, if G is the set of all integral automorphisms of Q and
t∑

i=1

P (UiX) = 0 for some U1, . . . , Ut ∈ G, then ϑ(τ, P,Q) = 0.
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Consider all possible sums
t∑

i=1

P (UiX) = 0. For such polynomials ϑ(τ, P,Q) = 0. If

among the last (ν+1)(ν+2)(2ν+3)
6

= t coefficients of P , at least one of four indices k, i, j, l of
the coefficient, equal to one, is odd, then spherical polynomials P satisfies the equality
ϑ(τ, P,Q) = 0. Hence, the maximal number of linearly independent theta-series (when
the indices k, i, j, l of the coefficient equal to one is even, of the corresponding spherical
polynomial P ) is

ν∑
i = 0
2|i

i∑
j = 0
2|j

j∑
l = 0
2|l

1 =
ν∑

i = 0
2|i

i∑
j = 0
2|j

(
j

2
+1) =

ν∑
i = 0
2|i

( i
2
+ 2)( i

2
+ 1)

2
=

(
ν
2
+ 3

3

)
,

here k = ν is even. Thus, we have proved the following
Theorem 2. The maximal number of linearly independent theta-series with spher-

ical polynomial P of order ν and diagonal quadratic form Q of five variables is
( ν

2
+3
3

)
.
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