Reports of Enlarged Session of the Seminar of I. Vekua Institute of Applied Mathematics Volume 29, 2015

ON THE SPACE OF SPHERICAL POLYNOMIAL WITH QUADRATIC FORMS OF FIVE VARIABLES

Shavgulidze K.

Abstract. The spherical polynomials of order ν with respect to quadratic form of five variables are constructed and the basis of the spaces of these spherical polynomials is established. The space of generalized theta-series is considered.

Keywords and phrases: Spherical polynomial, quadratic form, generalized theta-series.

AMS subject classification: 11E20, 11E25, 11F27.

Let

$$Q(X) = Q(x_1, \cdots, x_r) = \sum_{1 \le i \le j \le r} b_{ij} x_i x_j$$

be an integer positive definite quadratic form in an even number r of variables. To Q(X) we associate the even integral symmetric $r \times r$ matrix A defined by $a_{ii} = 2b_{ii}$ and $a_{ij} = a_{ji} = b_{ij}$, where i < j. If $X = [x_1, \dots, x_r]^T$ denotes a column vector, X^T is its transposition, then we have $Q(X) = \frac{1}{2}X^TAX$. Let A_{ij} denote the cofactor to the element a_{ij} in $D = \det A$ and a_{ij}^* the corresponding element of A^{-1} .

A homogeneous polynomial $P(X) = P(x_1, \dots, x_r)$ of degree ν with complex coefficients, satisfying the condition

$$\sum_{1 \le i,j \le r} a_{ij}^* \left(\frac{\partial^2 P}{\partial x_i \partial x_j} \right) = 0 \tag{1}$$

is called a spherical polynomial of order ν with respect to Q(X) (see [1]), and

$$\vartheta(\tau, P, Q) = \sum_{n \in \mathbb{Z}^r} P(n) z^{Q(n)}, \qquad z = e^{2\pi i \tau}, \qquad \tau \in \mathbb{C}, \qquad \text{Im}\, \tau > 0$$

is the corresponding generalized r-fold theta-series.

Let $P(\nu, Q)$ denote the vector space over \mathbb{C} of spherical polynomials P(X) of even order ν with respect to Q(X). Hecke [2] calculated the dimension of the space $P(\nu, Q)$ and showed that

dim
$$P(\nu, Q) = {\binom{\nu + r - 1}{r - 1}} - {\binom{\nu + r - 3}{r - 1}}$$

and form the basis of the space of spherical polynomials of second order with respect to Q(X).

For $\nu = 4$, Lomadze [3] constructed the basis of the space of spherical polynomials of the fourth order with respect to Q(X).

Our goal is to construct a basis of the space $P(\nu, Q)$ with a simpler way.

Let

$$P(X) = P(x_1, x_2, x_3, x_4, x_5) = \sum_{k=0}^{\nu} \sum_{i=0}^{k} \sum_{j=0}^{i} \sum_{l=0}^{j} a_{kijl} x_1^{\nu-k} x_2^{k-i} x_3^{i-j} x_4^{j-l} x_5^{l}$$

be a spherical function of order ν with respect to the positive quadratic form $Q(x_1, x_2, x_3, x_4, x_5)$ of five variables. Hence, according to condition (1) of spherical function and considering all $\frac{\partial^2 P}{\partial x_i \partial x_j}$, we obtain

$$\begin{aligned} A_{11}(\nu - k + 1)(\nu - k)a_{k-1,i,j,l} + 2A_{12}(\nu - k)(k - i)a_{k,i,j,l} \\ + 2A_{13}(\nu - k)(i - j + 1)a_{k,i+1,j,l} + 2A_{14}(\nu - k)(j - l + 1)a_{k,i+1,j+1,l} \\ + 2A_{15}(\nu - k)(l + 1)a_{k,i+1,j+1,l+1} + A_{22}(k - i)(k - i + 1)a_{k+1,i,j,l} \\ + 2A_{23}(k - i)(i - j + 1)a_{k+1,i+1,j,l} + 2A_{24}(k - i)(j - l + 1)a_{k+1,i+1,j+1,l} \\ + 2A_{25}(k - i)(l + 1)a_{k+1,i+1,j+1,l+1} + A_{33}(i - j + 1)(i - j + 2)a_{k+1,i+2,j,l} \\ + 2A_{34}(i - j + 1)(j - l + 1)a_{k+1,i+2,j+1,l} + 2A_{35}(i - j)(l + 1)a_{k+1,i+2,j+1,l+1} \\ + A_{44}(j - l + 2)(j - l + 1)a_{k+1,i+2,j+2,l} + 2A_{45}(j - l + 1)(l + 1)a_{k+1,i+2,j+2,l+1} \\ + A_{55}(l + 2)(l + 1)a_{k+1,i+2,j+2,l+2} = 0 \end{aligned}$$

$$(2)$$

Let

for

$$L = [a_{0000}, a_{1000}, a_{1100}, a_{1110}, a_{1111}, a_{2000}, \dots, a_{\nu\nu\nu\nu}]^T$$

be the column vector, where a_{kijl} $(0 \leq l \leq j \leq i \leq k \leq \nu)$ are the coefficients of polynomial P(X).

Conditions (2) in matrix notation have the following form $S \cdot L = 0$, where the matrix S (the elements of this matrix are defined from conditions (2)) have the form

$A_{11}(\nu - 1)\nu$	$2A_{12}(\nu - 1)$	$2A_{13}(\nu - 1)$	$2A_{14}(\nu - 1)$	$2A_{15}(\nu - 1)$	$2A_{22}$	 0
0	$A_{11}(\nu - 1)\nu$					 0
0	0	$A_{11}(\nu - 1)\nu$				 0
0	0	0	$A_{11}(\nu - 1)\nu$			 0
0	0	0	0	0	0	 $A_{55}(\nu-1)\nu \parallel$

The number of rows of the matrix S is equal to $\binom{\nu+2}{4}$ and the number of columns of the matrix S is equal to $\binom{\nu+4}{4}$. Hence S is $\binom{\nu+2}{4} \times \binom{\nu+4}{4}$ matrix. We devide the matrix S into two matrices S_1 and S_2 . S_1 is the left square nondegenerate $\binom{\nu+2}{4} \times \binom{\nu+2}{4}$ matrix, it consists of the first $\binom{\nu+2}{4}$ columns of the matrix S; S_2 is the right $\binom{\nu+2}{4} \times \binom{(\nu+1)(\nu+2)(2\nu+3)}{6}$ matrix, it consists of the last $\binom{\nu+4}{4} - \binom{\nu+2}{4} = \frac{(\nu+1)(\nu+2)(2\nu+3)}{6}$ columns of the matrix S. Similarly, we devide the matrix L into two matrices L_1 and L_2 . L_1 is the $\binom{(\nu+2)}{4} \times 1$ matrix, it consists of the upper $\binom{\nu+2}{4}$ elements of the matrix L; L_2 is the $\frac{(\nu+1)(\nu+2)(2\nu+3)}{6} \times 1$ matrix, it consists of the lower $\binom{\nu+4}{4} - \binom{\nu+2}{4} = \frac{(\nu+1)(\nu+2)(2\nu+3)}{6}$ elements of the matrix L.

L.

According to the new notation, the matrix equality has the form $S_1L_1 + S_2L_2 = 0$, i.e. $L_1 = -S_1^{-1}S_2L_2$. It follows from this equality that the matrix L_1 is expressed through the matrix L_2 , i.e., the first $\binom{\nu+2}{4}$ elements of the matrix L are expressed through its other $\frac{(\nu+1)(\nu+2)(2\nu+3)}{6} = t$ elements. Since the matrix L consists of the coefficients of the spherical polynomial P(X), its first $\binom{\nu+2}{4}$ coefficients can be expressed through the last $\frac{(\nu+1)(\nu+2)(2\nu+3)}{6} = t$ coefficients.

Let $Q(X) = Q(x_1, x_2, x_3, x_4, x_5)$ be a quadratic form of five variables. We have, dim $P(\nu, Q) = {\binom{\nu+4}{4}} - {\binom{\nu+2}{4}}.$

We have thereby proved the following theorem.

Theorem 1. The polynomials (the coefficients of polynomial P_i are given in the brackets)

 $P_1(a_{0000}^{(1)}, a_{1000}^{(1)}, \dots, a_{\nu-2,\nu-2,\nu-2}^{(1)}, 1, 0, 0, \dots, 0),$ $P_2(a_{0000}^{(2)}, a_{1000}^{(2)}, \dots, a_{\nu-2,\nu-2,\nu-2,\nu-2}^{(2)}, 0, 1, 0, \dots, 0),$ $P_t(a_{0000}^{(t)}, a_{1000}^{(t)}, \dots, a_{\nu-2,\nu-2,\nu-2}^{(t)}, 0, 0, 0, \dots, 1),$

where the first $\binom{\nu+2}{4}$ coefficients from a_{0000} to $a_{\nu-2,\nu-2,\nu-2}$ are calculated through

where the first $\binom{4}{6}$ coefficients, form the basis of the space $P(\nu, Q)$. Consider the generalized *r*-fold theta-series $\vartheta(\tau, P, Q) = \sum_{n \in \mathbb{Z}^r} P(n) z^{Q(n)}, \ z = e^{2\pi i \tau}.$

We have showed [4 - 6] that, the maximal number of linearly independent thetaseries for diagonal ternary quadratic forms with spherical polynomials of order ν is $\frac{\nu}{2} + 1$ and for diagonal quaternary quadratic forms is $\left(\frac{\nu}{2}+2\right)^{1}$. Our goal is to construct a basis of the space of generalized theta-series with spherical polynomial P of order ν and diagonal quadratic form Q of five variables.

Construct the integral automorphisms U of the diagonal quadratic form

$$Q(X) = b_{11}x_1^2 + b_{22}x_2^2 + b_{33}x_3^2 + b_{44}x_4^2 + b_{55}x_5^2.$$

An integral $r \times r$ matrix U is called an integral automorphism of the quadratic form Q(X) in r variables if the condition $U^T A U = A$ is satisfied.

The integral automorphisms of the quadratic form Q(X) are

$$U = \begin{vmatrix} \pm 1 & 0 & 0 & 0 & 0 \\ 0 & \pm 1 & 0 & 0 & 0 \\ 0 & 0 & \pm 1 & 0 & 0 \\ 0 & 0 & 0 & \pm 1 & 0 \\ 0 & 0 & 0 & 0 & \pm 1 \end{vmatrix}.$$

It is known ([1], p. 37) that, if G is the set of all integral automorphisms of Q and $\sum_{i=1}^{n} P(U_i X) = 0 \text{ for some } U_1, \dots, U_t \in G, \text{ then } \vartheta(\tau, P, Q) = 0.$

Consider all possible sums $\sum_{i=1}^{t} P(U_iX) = 0$. For such polynomials $\vartheta(\tau, P, Q) = 0$. If among the last $\frac{(\nu+1)(\nu+2)(2\nu+3)}{6} = t$ coefficients of P, at least one of four indices k, i, j, l of the coefficient, equal to one, is odd, then spherical polynomials P satisfies the equality $\vartheta(\tau, P, Q) = 0$. Hence, the maximal number of linearly independent theta-series (when the indices k, i, j, l of the coefficient equal to one is even, of the corresponding spherical polynomial P) is

$$\sum_{\substack{i=0\\2|i}}^{\nu} \sum_{\substack{j=0\\2|j}}^{i} \sum_{\substack{l=0\\2|i}}^{j} 1 = \sum_{\substack{i=0\\2|i}}^{\nu} \sum_{\substack{j=0\\2|i}}^{i} (\frac{j}{2}+1) = \sum_{\substack{i=0\\2|i}}^{\nu} \frac{(\frac{i}{2}+2)(\frac{i}{2}+1)}{2} = \binom{\frac{\nu}{2}+3}{3},$$

here $k = \nu$ is even. Thus, we have proved the following

Theorem 2. The maximal number of linearly independent theta-series with spherical polynomial P of order ν and diagonal quadratic form Q of five variables is $\left(\frac{\nu}{2}+3\right)$.

REFERENCES

1. Gooding F. Modular forms arising from spherical polynomials and positive definite quadratic forms, J. Number Theory, 9 (1977), 36-47.

Hecke E. Mathematische Werke. Zweite Auflage, Vandenhoeck und Ruprecht, Göttingen, 1970.
 Lomadze G. On the basis of the space of fourth order spherical functions with respect to a

positive quadratic form (Russian), Bull. Acad. Sci. Georgian SSR, 69 (1973), 533-536.
4. Shavgulidze K. On the dimension of some spaces of generalized ternary theta-series. Georgian

Math. J., 9 (2002), 167-178.

5. Shavgulidze K. On the dimension of spaces of generalized quaternary theta-series. *Proc. I. Vekua Inst. Appl. Math.*, **59-60** (2009-2010), 60-75.

6. Shavgulidze K. On the dimensions of some spaces of generalized theta-series. *Lithuanian Math. J.*, **53** (2013), 235-240.

Received 31.05.2015; revised 17.09.2015; accepted 20.11.2015

Author's address:

K. Shavgulidze Iv. Javakhishvili Tbilisi State University 2, University St., Tbilisi 0186 Georgia E-mail: ketevan.shavgulidze@tsu.ge