ON THE SPACE OF SPHERICAL POLYNOMIAL WITH QUADRATIC FORMS OF FIVE VARIABLES

Shavgulidze K.

Abstract

The spherical polynomials of order ν with respect to quadratic form of five variables are constructed and the basis of the spaces of these spherical polynomials is established. The space of generalized theta-series is considered.

Keywords and phrases: Spherical polynomial, quadratic form, generalized theta-series.
AMS subject classification: 11E20, 11E25, 11F27.
Let

$$
Q(X)=Q\left(x_{1}, \cdots, x_{r}\right)=\sum_{1 \leq i \leq j \leq r} b_{i j} x_{i} x_{j}
$$

be an integer positive definite quadratic form in an even number r of variables. To $Q(X)$ we associate the even integral symmetric $r \times r$ matrix A defined by $a_{i i}=2 b_{i i}$ and $a_{i j}=a_{j i}=b_{i j}$, where $i<j$. If $X=\left[x_{1}, \cdots, x_{r}\right]^{T}$ denotes a column vector, X^{T} is its transposition, then we have $Q(X)=\frac{1}{2} X^{T} A X$. Let $A_{i j}$ denote the cofactor to the element $a_{i j}$ in $D=\operatorname{det} A$ and $a_{i j}^{*}$ the corresponding element of A^{-1}.

A homogeneous polynomial $P(X)=P\left(x_{1}, \cdots, x_{r}\right)$ of degree ν with complex coefficients, satisfying the condition

$$
\begin{equation*}
\sum_{1 \leq i, j \leq r} a_{i j}^{*}\left(\frac{\partial^{2} P}{\partial x_{i} \partial x_{j}}\right)=0 \tag{1}
\end{equation*}
$$

is called a spherical polynomial of order ν with respect to $Q(X)$ (see [1]), and

$$
\vartheta(\tau, P, Q)=\sum_{n \in \mathbb{Z}^{r}} P(n) z^{Q(n)}, \quad z=e^{2 \pi i \tau}, \quad \tau \in \mathbb{C}, \quad \operatorname{Im} \tau>0
$$

is the corresponding generalized r-fold theta-series.
Let $P(\nu, Q)$ denote the vector space over \mathbb{C} of spherical polynomials $P(X)$ of even order ν with respect to $Q(X)$. Hecke [2] calculated the dimension of the space $P(\nu, Q)$ and showed that

$$
\operatorname{dim} P(\nu, Q)=\binom{\nu+r-1}{r-1}-\binom{\nu+r-3}{r-1}
$$

and form the basis of the space of spherical polynomials of second order with respect to $Q(X)$.

For $\nu=4$, Lomadze [3] constructed the basis of the space of spherical polynomials of the fourth order with respect to $Q(X)$.

Our goal is to construct a basis of the space $P(\nu, Q)$ with a simpler way.

Let

$$
P(X)=P\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\sum_{k=0}^{\nu} \sum_{i=0}^{k} \sum_{j=0}^{i} \sum_{l=0}^{j} a_{k i j l} x_{1}^{\nu-k} x_{2}^{k-i} x_{3}^{i-j} x_{4}^{j-l} x_{5}^{l}
$$

be a spherical function of order ν with respect to the positive quadratic form $Q\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$ of five variables. Hence, according to condition (1) of spherical function and considering all $\frac{\partial^{2} P}{\partial x_{i} \partial x_{j}}$, we obtain

$$
\begin{align*}
& A_{11}(\nu-k+1)(\nu-k) a_{k-1, i, j, l}+2 A_{12}(\nu-k)(k-i) a_{k, i, j, l} \\
& +2 A_{13}(\nu-k)(i-j+1) a_{k, i+1, j, l}+2 A_{14}(\nu-k)(j-l+1) a_{k, i+1, j+1, l} \\
& +2 A_{15}(\nu-k)(l+1) a_{k, i+1, j+1, l+1}+A_{22}(k-i)(k-i+1) a_{k+1, i, j, l} \\
& +2 A_{23}(k-i)(i-j+1) a_{k+1, i+1, j, l}+2 A_{24}(k-i)(j-l+1) a_{k+1, i+1, j+1, l} \\
& +2 A_{25}(k-i)(l+1) a_{k+1, i+1, j+1, l+1}+A_{33}(i-j+1)(i-j+2) a_{k+1, i+2, j, l} \tag{2}\\
& +2 A_{34}(i-j+1)(j-l+1) a_{k+1, i+2, j+1, l}+2 A_{35}(i-j)(l+1) a_{k+1, i+2, j+1, l+1} \\
& +A_{44}(j-l+2)(j-l+1) a_{k+1, i+2, j+2, l}+2 A_{45}(j-l+1)(l+1) a_{k+1, i+2, j+2, l+1} \\
& +A_{55}(l+2)(l+1) a_{k+1, i+2, j+2, l+2}=0
\end{align*}
$$

for $0 \leq l \leq j \leq i<k \leq \nu-1$.
Let

$$
L=\left[a_{0000}, a_{1000}, a_{1100}, a_{1110}, a_{1111}, a_{2000}, \ldots, a_{\nu \nu \nu \nu}\right]^{T}
$$

be the column vector, where $a_{k i j l}(0 \leq l \leq j \leq i \leq k \leq \nu)$ are the coefficients of polynomial $P(X)$.

Conditions (2) in matrix notation have the following form $S \cdot L=0$, where the matrix S (the elements of this matrix are defined from conditions (2)) have the form

$$
\left\|\begin{array}{|lccccccc||}
A_{11}(\nu-1) \nu & 2 A_{12}(\nu-1) & 2 A_{13}(\nu-1) & 2 A_{14}(\nu-1) & 2 A_{15}(\nu-1) & 2 A_{22} & \ldots & 0 \\
0 & A_{11}(\nu-1) \nu & \ldots & \ldots & \ldots & \ldots & \ldots & 0 \\
0 & 0 & A_{11}(\nu-1) \nu & \ldots & \ldots & \ldots & \ldots & 0 \\
0 & 0 & 0 & A_{11}(\nu-1) \nu & \ldots & \ldots & \ldots & 0 \\
\ldots & \ldots \\
0 & 0 & 0 & 0 & 0 & 0 & \ldots & A_{55}(\nu-1) \nu
\end{array}\right\| .
$$

The number of rows of the matrix S is equal to $\binom{\nu+2}{4}$ and the number of columns of the matrix S is equal to $\binom{\nu+4}{4}$. Hence S is $\binom{\nu+2}{4} \times\binom{\nu+4}{4}$ matrix. We devide the matrix S into two matrices S_{1} and S_{2}. S_{1} is the left square nondegenerate $\binom{\nu+2}{4} \times\binom{\nu+2}{4}$ matrix, it consists of the first $\binom{\nu+2}{4}$ columns of the matrix $S ; S_{2}$ is the right $\binom{\nu+2}{4} \times \frac{(\nu+1)(\nu+2)(2 \nu+3)}{6}$ matrix, it consists of the last $\binom{\nu+4}{4}-\binom{\nu+2}{4}=\frac{(\nu+1)(\nu+2)(2 \nu+3)}{6}$ columns of the matrix S.

Similarly, we devide the matrix L into two matrices L_{1} and $L_{2} . L_{1}$ is the $\binom{\nu+2}{4} \times 1$ matrix, it consists of the upper $\binom{\nu+2}{4}$ elements of the matrix $L ; L_{2}$ is the $\frac{(\nu+1)(\nu+2)(2 \nu+3)}{6} \times$ 1 matrix, it consists of the lower $\binom{\nu+4}{4}-\binom{\nu+2}{4}=\frac{(\nu+1)(\nu+2)(2 \nu+3)}{6}$ elements of the matrix L.

According to the new notation, the matrix equality has the form $S_{1} L_{1}+S_{2} L_{2}=0$, i.e. $L_{1}=-S_{1}^{-1} S_{2} L_{2}$. It follows from this equality that the matrix L_{1} is expressed through the matrix L_{2}, i.e., the first $\binom{\nu+2}{4}$ elements of the matrix L are expressed through its other $\frac{(\nu+1)(\nu+2)(2 \nu+3)}{6}=t$ elements. Since the matrix L consists of the coefficients of the spherical polynomial $P(X)$, its first $\binom{\nu+2}{4}$ coefficients can be expressed through the last $\frac{(\nu+1)(\nu+2)(2 \nu+3)}{6}=t$ coefficients.

Let $Q(X)=Q\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$ be a quadratic form of five variables. We have, $\operatorname{dim} P(\nu, Q)=\binom{\nu+4}{4}-\binom{\nu+2}{4}$.

We have thereby proved the following theorem.
Theorem 1. The polynomials (the coefficients of polynomial P_{i} are given in the brackets)

$$
\begin{aligned}
& P_{1}\left(a_{0000}^{(1)}, a_{1000}^{(1)}, \ldots, a_{\nu-2, \nu-2, \nu-2, \nu-2}^{(1)}, 1,0,0, \ldots, 0\right), \\
& P_{2}\left(a_{0000}^{(2)}, a_{1000}^{(2)}, \ldots, a_{\nu-2, \nu-2, \nu-2, \nu-2}^{(2)}, 0,1,0, \ldots, 0\right),
\end{aligned}
$$

$$
P_{t}\left(a_{0000}^{(t)}, a_{1000}^{(t)}, \ldots, a_{\nu-2, \nu-2, \nu-2, \nu-2}^{(t)}, 0,0,0, \ldots, 1\right),
$$

where the first $\binom{\nu+2}{4}$ coefficients from a_{0000} to $a_{\nu-2, \nu-2, \nu-2, \nu-2}$ are calculated through other $\frac{(\nu+1)(\nu+2)(2 \nu+3)}{6}=t$ coefficients, form the basis of the space $P(\nu, Q)$.

Consider the generalized r-fold theta-series $\vartheta(\tau, P, Q)=\sum_{n \in \mathbb{Z}^{r}} P(n) z^{Q(n)}, z=e^{2 \pi i \tau}$.
We have showed $[4-6]$ that, the maximal number of linearly independent thetaseries for diagonal ternary quadratic forms with spherical polynomials of order ν is $\frac{\nu}{2}+1$ and for diagonal quaternary quadratic forms is $\binom{\frac{\nu}{2}+2}{2}$. Our goal is to construct a basis of the space of generalized theta-series with spherical polynomial P of order ν and diagonal quadratic form Q of five variables.

Construct the integral automorphisms U of the diagonal quadratic form

$$
Q(X)=b_{11} x_{1}^{2}+b_{22} x_{2}^{2}+b_{33} x_{3}^{2}+b_{44} x_{4}^{2}+b_{55} x_{5}^{2}
$$

An integral $r \times r$ matrix U is called an integral automorphism of the quadratic form $Q(X)$ in r variables if the condition $U^{T} A U=A$ is satisfied.

The integral automorphisms of the quadratic form $Q(X)$ are

$$
U=\left\|\begin{array}{ccccc}
\pm 1 & 0 & 0 & 0 & 0 \\
0 & \pm 1 & 0 & 0 & 0 \\
0 & 0 & \pm 1 & 0 & 0 \\
0 & 0 & 0 & \pm 1 & 0 \\
0 & 0 & 0 & 0 & \pm 1
\end{array}\right\| .
$$

It is known ([1], p. 37) that, if G is the set of all integral automorphisms of Q and $\sum_{i=1}^{t} P\left(U_{i} X\right)=0$ for some $U_{1}, \ldots, U_{t} \in G$, then $\vartheta(\tau, P, Q)=0$.

Consider all possible sums $\sum_{i=1}^{t} P\left(U_{i} X\right)=0$. For such polynomials $\vartheta(\tau, P, Q)=0$. If among the last $\frac{(\nu+1)(\nu+2)(2 \nu+3)}{6}=t$ coefficients of P, at least one of four indices k, i, j, l of the coefficient, equal to one, is odd, then spherical polynomials P satisfies the equality $\vartheta(\tau, P, Q)=0$. Hence, the maximal number of linearly independent theta-series (when the indices k, i, j, l of the coefficient equal to one is even, of the corresponding spherical polynomial P) is

$$
\sum_{i=0}^{\nu} \sum_{\substack{j=0}}^{i} \sum_{\substack{l=0 \\ 2 \mid i}}^{2 \mid j} 1=\sum_{i=0}^{j \mid l} \sum_{\substack{j=0 \\ 2 \mid i}}\left(\frac{j}{2}+1\right)=\sum_{i=0}^{\nu} \frac{\left(\frac{i}{2}+2\right)\left(\frac{i}{2}+1\right)}{2}=\binom{\frac{\nu}{2}+3}{3},
$$

here $k=\nu$ is even. Thus, we have proved the following
Theorem 2. The maximal number of linearly independent theta-series with spherical polynomial P of order ν and diagonal quadratic form Q of five variables is $\binom{\frac{\nu}{2}+3}{3}$.

REFERENCES

1. Gooding F. Modular forms arising from spherical polynomials and positive definite quadratic forms, J. Number Theory, 9 (1977), 36-47.
2. Hecke E. Mathematische Werke. Zweite Auflage, Vandenhoeck und Ruprecht, Göttingen, 1970.
3. Lomadze G. On the basis of the space of fourth order spherical functions with respect to a positive quadratic form (Russian), Bull. Acad. Sci. Georgian SSR, 69 (1973), 533-536.
4. Shavgulidze K. On the dimension of some spaces of generalized ternary theta-series. Georgian Math. J., 9 (2002), 167-178.
5. Shavgulidze K. On the dimension of spaces of generalized quaternary theta-series. Proc. I. Vekua Inst. Appl. Math., 59-60 (2009-2010), 60-75.
6. Shavgulidze K. On the dimensions of some spaces of generalized theta-series. Lithuanian Math. J., 53 (2013), 235-240.

Received 31.05.2015; revised 17.09.2015; accepted 20.11.2015
Author's address:
K. Shavgulidze
Iv. Javakhishvili Tbilisi State University

2, University St., Tbilisi 0186
Georgia
E-mail: ketevan.shavgulidze@tsu.ge

